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Abstract Modeling and transforming have always been the
cornerstones of software system development, albeit often
investigated by different research communities. Modeling
addresses how information is represented and processed,
while transformation cares about what the results of process-
ing this information are. To address the growing complexity
of software systems, model-driven engineering (MDE) lever-
ages domain-specific languages to define abstract models
of systems and automated methods to process them. Mean-
while, compiler technology mostly concentrates on advanced
techniques and tools for program transformation. For this, it
has developed complex analyses and transformations (from
lexical and syntactic to semantic analyses, down to platform-
specific optimizations). These two communities appear today
quite complementary and are starting to meet again in the
software language engineering (SLE) field. SLE addresses
all the stages of a software language lifecycle, from its defin-
ition to its tooling. In this article, we show how SLE can lean
on the expertise of both MDE and compiler research com-
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munities and how each community can bring its solutions to
the other one. We then draw a picture of the current state of
SLE and of the challenges it has still to face.
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1 Introduction

During the 70s, tools such as Lex, Yacc, cc, Make and SCCS
basically defined the extent of software engineering tools. As
time passed, these tools were extended, refined and produced
offsprings in a variety of ways. Among the many research
strands stemming out of this initial set, we will concentrate
in this article on two that initially took very different routes,
namely Compilation and Model Driven Engineering (MDE).

On the one hand, research in compilation significantly
pushed the state of the art with respect to processing software
language constructs. Major advances include efficient pars-
ing and parser generation, advanced grammar formalisms
(e.g., higher order attribute grammars [1]), source transfor-
mation systems and languages such as DMS [2], Rascal [3],
Stratego [4], or TXL [5] that provide powerful general-
purpose sets of capabilities for addressing a wide range of
software analysis problems. Important contributions in pro-
gram and dataflow analysis include type checking, abstract
interpretation, alias and shape analysis and whole pro-
gram analysis. On the code generation side, much progress
has been made to address the variety and complexity of
modern processors (e.g., complex instruction sets, power-
consumption issues, hierarchical memory structures, multi-
cores, etc.) with sophisticated algorithms handling (data
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and control) flow analysis, aliasing analysis, register allo-
cation, etc.

A key driver of compiler research is the constant quest
of maximal efficiency, both at code level and at meta-level
(i.e., in the algorithms implemented in the compilers them-
selves), to the point where we can truly speak of a culture
of efficiency in the compiler community. However, a clear
and recent concern is the extremely complex architectures
of sophisticated compilers, that start to pose classical soft-
ware engineering problems of reliability, development cost,
maintainability, etc.

On the other hand, research in MDE originated in the prob-
lem context of representing and manipulating complex data.
Beyond the initial issues of Chen’s Entity-Relationship mod-
eling, MDE was used widely enough to address separation of
concerns (SoC) issues, by breaking down complex systems
into as many models as needed to make all the relevant con-
cerns understandable. These models may be expressed with
a general-purpose modeling language such as the UML [6],
or with domain specific Languages (DSL) when it is more
appropriate. Each of these models can be seen as the abstrac-
tion of an aspect of reality for handling a given concern.

Models have long been used as descriptive artifacts, which
was already extremely useful. The idea of MDE is to go
beyond that, i.e., to make it possible to perform computations
on models, for example, to simulate some behavior [7], or
to generate code or tests from them [8]. This requires that
models are no longer informal and that the language used to
describe them has a well-defined syntax and semantics.

In many domains, engineers rely on DSLs to solve the
complex issues of engineering software at the right level
of abstraction. These DSLs define modeling constructs that
are tailored to the specific needs of a particular domain.
When such a new DSL is needed, it is now often first
defined through a meta-model, i.e., a model describing its
abstract syntax [9] when traditional language engineering
would have started with the grammar of the language. Rely-
ing on well-tooled standards such as MOF [10], the meta-
modeling approach makes it possible to readily benefit from
a set of tools such as reflexive editors, or XML serialization
of models. More importantly, having such a tool-supported
de facto standard for defining models and meta-models paves
the way towards a rich ecosystem of interoperable tools work-
ing seamlessly with these models and meta-models, e.g.,
Kermeta, which is a MDE platform for building rich devel-
opment environments around meta-models using an aspect-
oriented paradigm [7,11]. However, people building such
tools often re-invent solutions that are well known in the
compiler community.

The goal of this article was to explore how research
in MDE and research in compilation could cross-fertilize
and might even converge on software language engineer-
ing [12], after 30 years of diverging evolution. Several groups

around the world have already started to investigate sev-
eral aspects of this idea. For instance, Eclipse tools such
as EMFtext1 or Xtext2 already bridge the world of meta-
modeling and grammar parsing. JastAdd [13] combines
higher-order attribute grammars with object-orientation and
simple aspect-orientation (static introductions) to provide
better modularity mechanisms. Rather than reviewing such
examples individually, we take a holistic view: what could
compiler research bring to MDE (Sect. 2)? And conversely,
what could MDE research bring to compilation (Sect. 3)?
We show in Sect. 3 how the synergies between these two
fields can benefit SLE as well as two key challenges which
cannot be solved by these synergies. Finally, Sect. 5 con-
cludes and presents some perspectives about other possible
cross-fertilizations for SLE.

2 Leveraging compilation breakthroughs for MDE

Because computer programming evolved from machine
language up through assembly and higher-level languages,
compilation has been one of the oldest areas of research in
computer science. It has had a tremendous influence on and
benefitted from many core areas in computer science.

In addition, modern compiler design practices also offer an
interesting perspective from the software engineering point
of view. It is indeed widely acknowledged that modern indus-
trial strength compilers are extremely complex pieces of soft-
ware and that designing a compiler is a very challenging task.
As a matter of fact, most modern compiler infrastructures
are organized according to strict design rules that are best
practices and are the result of more than four decades of
experience in compiler software design.

This typical compiler toolchain organization is illustrated
in Fig. 1 and consists of three stages, namely the front-end
which deals with parsing and semantic checks, the middle
end stage, where all the machine independent analyses and
optimizations are performed, and the back-end stage whose
role is to efficiently generate efficient machine code.

We present in this section some experiences from compi-
lation that could benefit MDE.

2.1 Parsers

One of the most obvious contributions of the compiler com-
munity to MDE lies in the design/proposal of efficient algo-
rithms to automate the parsing of languages from formal
specifications.

For context-free grammars, the main breakthrough occur-
red more than 40 years ago with the introduction of LR
and LL parser generators [14,15] that could efficiently deal

1 http://www.emftext.org/index.php/EMFText.
2 http://www.eclipse.org/Xtext.
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Fig. 1 The typical organization of a compiler flow

with a large subset of context free grammars. Most program-
ming languages are too complex to be expressed with such
grammars, and these techniques were subsequently extended
(e.g., Generalized Left Right Parsing (GLR) [16] and LL(*)
parsers [17]) to support a wider class of grammars.

Interestingly, compiler compiler frameworks started about
15 years ago to offer additional features which go well
beyond strict parsing. As an example, smart error-recovery
schemes [18] are used either to help programmers find the
cause of an error or to suggest possible corrections. Sim-
ilarly incremental/lazy parsing [19] is also receiving more
and more interest. This comes from the fact that syntac-
tic analysis is nowadays tightly coupled to programming
environment (e.g., it enables on-the-fly syntactic checking).
In this context parsing speed may become an issue and hence
requires adequate techniques and algorithms.

With the growing use of DSLs the MDE community faces
a growing need for parsing tools and has started to build
on many achievements of the compiler research community.
These achievements served as a base to build MDE rich lan-
guage toolset. Indeed, many languages have been introduced
for a range of problems such as GUI specification, verifica-
tion and prototyping [20], multiagent system definition [21],
model validation (e.g., using the Object Constraint Lan-
guage [22]), model-to-model transformations (e.g., through

dedicated languages such as the standard QVT [23] or ad hoc
ones such as Kermeta3 or ATL4) and model-to-text transfor-
mations (e.g., template languages such as Acceleo, Xpand,
etc.). Note that all these language toolsets were designed in
an ad hoc manner, with little reuse. This lack of reuse is one
of the motivations behind SLE workbenches such as Xtext
and EMFText.

2.2 Sophisticated algorithms

Most compilers perform very complex analyses or trans-
formations on the program representation before targeting
a given execution platform. These analyses rely on very
sophisticated algorithms, that are generally either specific
to the compiler target language or specific to a family of lan-
guages (imperative, with or without dynamic typing, func-
tional, etc.).

These algorithms (as explained in the next subsections)
seek to obtain accurate information about the program behav-
ior, while remaining scalable. They can be used for source
code verification purposes (e.g., for detecting memory errors
at compile time), for optimization purposes (e.g., finding
statements that can be executed in parallel) or both.

Examples include shape analysis [24], dependency analy-
sis, pointer analysis and type inference [25], just to name a
few. Although there exist many established algorithms for
these problems, static analysis is a very important and very
active facet/contribution of compiler research.

Similarly, loop transformations are also key optimiza-
tions that focus on specific portion of a program and seek
to adapt the ordering of computations in loop nests kernels
to suit the target machine memory hierarchy (cache memory,
processor registers) or machine parallel processing capabil-
ities (thread or data level parallelism). Of course machine
dependant algorithms have also received a lot of attention.
Such algorithms include register allocation and instruction
selection and instruction scheduling algorithms which seek
to find the best mapping between a program and a given
machine instruction set or micro-architecture.

Again, such a transformation framework leverages very
complex algorithms, involving many challenging combina-
torial optimizations problems and platform-specific knowl-
edge.

On the other hand, because the idea behind MDE is to
provide models in which most domain-specific knowledge is
made explicit in the representation, developers do not gener-
ally need (or do not seek) to rely on sophisticated tools and
algorithms to derive their system implementations. Indeed,
even though the implementation of many model transfor-
mations consists of very complex structural transformations,

3 http://www.kermeta.org/.
4 http://eclipse.org/atl/.
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their complexity derives from the complexity of the models
involved in the transformation, rather than from the algorithm
used in the transformation. However, since modern MDE
increasingly advocates the use of DSLs to describe software
systems, compilation chains for these DSLs will eventually
have to consider more complex transformations, even with
the use of more suitable structures for model transformations.
Therefore, MDE could benefit from the long-time experience
of the compilation community in the development of such
complex algorithms.

2.3 Program transformation paradigms

Most compiler representations are either based on (1) a tree-
based structure, which more-or-less directly corresponds to
the abstract syntax tree (AST) of the target language, or (2)
on a control flow graph (CFG) representation in which the
high-level control structure is flattened to expose the program
as a graph of basic blocs in which the execution is strictly
sequential. Usually, most compiler infrastructures manipu-
late both representations (front-end analyses and transforma-
tions operate on ASTs, whereas middle- and back-end stages
generally operate on CFGs).

Many transformations/analyses operating on AST (resp.
CFGs) have a lot in common. Therefore, there has long been
interest in proposing program transformation/analysis para-
digms to enable capturing and expressing a large family of
transformations within a single workbench [26,27].

Transformations known as term rewriting techniques
[28,4] fall into this category as they allow compiler writers
to concisely express complex pattern matching and rewriting
operations on trees. Term rewriting techniques make it pos-
sible to combine powerful pattern matching techniques with
high-level rewriting ‘strategies’ that allow users to define the
tree term traversal in a concise and yet very flexible way, by
combining simple low-level primitives. In addition to con-
ciseness and expressivity, the underlying formal definition of
such term rewriting techniques also brings additional oppor-
tunities for formal proof and verification (e.g., complete-
ness, consistency). MDE tries leverage such techniques for
model transformation. Among others we can cite tools such
as AGG5 or TOM-EMF.6 This is also the goal of the QVT [23]
standard which defines a declarative/operational hybrid lan-
guage for model transformations, although the standard does
not give any reference implementation for this language.

2.4 Program analysis paradigms

Another class of popular compiler analyses/transformations,
which are usually applied to CFG like structures, are those

5 http://user.cs.tu-berlin.de/~gragra/agg/.
6 http://tom.loria.fr/wiki/index.php5/Documentation:EMF.

based on dataflow analysis [29]. These analyses are used to
gather information about the possible values manipulated at
different control flow points of a program, the information
collected then being used to drive verification and optimiza-
tion processes.

The analysis is based on the principle of dataflow equa-
tions, which are used to propagate information between pairs
of connected basic blocks (either forward along or backward
against the actual program control flow) using a transfer func-
tion. These equations are then solved iteratively until a fixed
point is obtained.

Because of the genericity of the technique, several
dataflow analysis workbenches (some of them leveraging
DSLs) have been proposed [30–32]. Their goal is to help
automate part (or all) the implementation of a dataflow analy-
sis for a given compiler infrastructure and a (family of) lan-
guages.

At first glance, it may seem that these advanced tech-
niques are very specific to general-purpose programming
languages from which a control flow can be extracted.7 How-
ever, many domain-specific languages embed constructs to
describe behaviors, these behaviors following either imper-
ative or functional programming semantics. All these lan-
guages are hence also amenable to dataflow analysis and can
therefore benefit from all existing dataflow-based Verifica-
tion and Validation (V&V) techniques.

2.5 Efficiency, scalability

Compiler designers always emphasize scalability when inte-
grating or devising new analyses and transformations in their
flow. As an illustration, production compilers such as gcc8 or
Intel’s icc9 are expected to compile a 100k-loc program in a
matter of minutes, whether optimizations are enabled or not .
These constraints are even tighter for just-in-time compilers,
which are becoming more and more widely used due to the
wide adoption of virtual machines such as the JVM and .Net.
In these latter cases, compilation time directly impacts pro-
gram execution and only very fast and scalable algorithms
(i.e., linear complexity algorithms) can be allowed.

Achieving such a scalability while preserving good perfor-
mance in the compiled code is therefore a very difficult chal-
lenge, especially since many of the optimization problems
involved in compiler back-ends (register allocation, instruc-
tion scheduling and selection and other combinatorial opti-
mization problems) are NP-complete or NP-hard and suffer
from combinatorial explosion.

7 This includes functional languages where the notion of dataflow
analysis is well known.
8 http://gcc.gnu.org/.
9 http://software.intel.com/en-us/articles/intel-compilers.
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In the MDE world, performance has not been such a con-
cern so far. The software engineering community has con-
stantly been benefiting from the Moore’s law-driven progress
of very-large-scale Integration technology combined with the
numerous breakthrough in programmable processor archi-
tectures (RISC, super-scalar ISA, etc.). Such evolutions
enable the introduction of more and more complex frame-
works, whose role is to abstract away the underlying machine
as much as possible. As a consequence, and from an opti-
mizing compiler point of view, modern software engineering
workbenches are perceived as resource hungry, slow and suf-
fering from significant scalability issues.

As a matter of fact, when it comes to execution effi-
ciency, the MDE community has been long confronted with
a chicken-and-egg dilemma. Performance issues will only
be addressed by the community when there is a sufficiently
large user base with such strong performance requirements.
In the mean time, potential users seeking good performance
will remain reluctant to use MDE technologies. We believe
this dilemma will soon have to be addressed by the MDE
community. Indeed, the outbreak of multicore and many-
core architectures will require a major shift in the way
software is designed, since benefiting from processor perfor-
mance improvements will no longer happen for free. Among
other challenges, software implementations will be forced to
explicitly expose considerable amounts of usable parallelism
and this could be the first step toward a more systematic con-
cern for implementation efficiency. Consideration of such
efficiency and scalability issues would benefit MDE, and
particularly in domains such as embedded systems, green
computing or high-performance computing.

2.6 Platform description model

Compilers are meant to produce efficient code, and produc-
ing efficient code obviously requires a deep knowledge and
understanding of the target execution platform. For this rea-
son, there has been a lot of effort on optimization, i.e., to
improve the efficiency of the code generated by compilers.

The problem tackled in the optimizing compiler commu-
nity goes from high-level target agnostic optimization (dead
code elimination (DCE), constant propagation, common sub-
expression elimination, etc.) to more machine dependent
ones (register allocation, instruction selection, automatic par-
allelization, etc.).

Because of the high development cost required to port an
existing compiler to a new processor architecture, significant
research was devoted to trying to automate part of this effort,
by making the infrastructure retargetable [33].

In optimizing compilers, target description languages are
commonly used to describe in a systematic manner, the fea-
tures of interest of the underlying platform. In addition to
target portability they expose some cost feature to the com-

piler/code generator so that the quality of the generated code
can be optimized. Such concerns are usually distant from the
MDE community.

This is made possible through the use of a formal machine
description, which captures all the information/knowledge
about the target platform [34,35]. As an example, most com-
piler infrastructures are designed to be easily retargeted to a
new processor. This retargetability is achieved through the
use of a formal description of the processor instruction set
(operational semantics, execution cost, binary format, etc.).
This description is then used to automatically regenerate an
optimizing back-end for the new architecture (code selector,
register allocation, assembler, etc.).

Later, a similar principle was also followed by the
MDE community: for example, model-driven architecture
(MDA) [36] aims at achieving a good separation of concerns
through the use of platform-independent models (PIM) and
platform-specific models (PSM). The transformation from
PIM models to PSM models is then performed using a plat-
form description model (PDM) whose role is to provide an
abstract description of the target platform that is supposed to
drive the transformation process [37,38].

Experience shows that only few MDA workbenches actu-
ally follow this approach. In practice most PIM to PSM
transformations do not use an explicit model of the target
platform: the platform specificities are instead implicitly cap-
tured within the transformations. Even when PDM are explic-
itly used in the flow, they almost never serve to optimize the
performance, or other QoS aspects, of the generated code,
unlike what a compiler would do.

Their weakness is that most PDMs do not expose enough
semantics and/or details to enable optimized PIM to PSM
transformations. This lack of formalization of platform fea-
tures can be explained by the difficulty of describing complex
software platform (such as J2EE, .NET, Android, etc.) at the
right level of abstraction. As far as this issue is concerned,
the MDE community has probably a lot to learn from the
optimizing compiler community.

3 Leveraging MDE breakthroughs for compilation

Model-driven engineering is the result of a long evolution in
software engineering to handle the increasing complexity of
software development. In particular, MDE benefits from the
modeling and programming evolution and their best practices
such as complex data representation, separation of concerns
or design-by-contract.

As shown in Fig. 2, MDE workbenches often use high-
level models to describe a system, each one representing
an aspect of the system. These models are then composed
and transformed into lower-level models in successive steps
until we obtain an executable representation of (some part of)
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Fig. 2 MDE in the left-hand side of the V life-cycle

the system (e.g., executable code, configuration scripts, etc.).
Moreover, this process can also include early verification and
validation (V&V) stages at every step of the refinement, by
the transformation of the (domain-specific) models into suit-
able models for V&V (e.g., petri nets for model checking).

This process, which is represented by the refinement axis,
is of course very similar to compilation which produces a
low-level executable code from a high-level source code by
successive semantic-preserving steps of transformations. We
now present some of the best practices of MDE in software
development and describe how compilation could benefit
from them.

3.1 Complex data representation

Model-driven engineering is primarily concerned with reduc-
ing the accidental complexities associated with develop-
ing complex software systems [39]. This is accomplished
through the use of technologies that support rigorous analy-
sis and transformation of abstract descriptions of software to
concrete implementations [40]. To handle the design of such
descriptions, MDE technologies take advantage of the expe-
rience acquired in the fields of databases and programming
languages and thus integrate more advanced paradigms to
represent complex data.

In particular, the object-oriented principles are shifted
from programming to modeling with languages such as UML
[6]. Nowadays, these principles are at the heart of the domain-
specific knowledge capitalization in the metamodeling activ-
ity, thanks to languages such as MOF [10]. Consequently, a
metamodel can be seen as the object-oriented model of an
abstract syntax tree (AST) and the corresponding symbol
table [9,41].

Usually, metamodeling environments also provide built-
in support for serialization, model interchange, visualiza-
tion and more recently configuration management. Thus, one
obvious way that MDE can contribute to the world of com-
pilation lies in the best-practices for representing and manip-
ulating the complex data structures at the heart of modern
optimizing compilers.

Moreover, the high-level information contained by models
can be used for domain-specific optimizations, whereas the
same information may be difficult for a compiler to extract
from a lower-level representation (e.g., a classical compiler
IR) [42,43].

3.2 Separation of concerns

Each model represents an aspect of the software (aka. view-
point) and allows a clear separation of concerns (SoC) in the
development activity. Thus, each domain expert can focus
on her very particular problem and benefit from a special-
ized toolset without having to consider any other concerns.
This principle is illustrated in Fig. 2 where different mod-
els, conforming to different languages supporting dedicated
tools are used to represent a software system. These models
can then be composed and refined into models at a lower
abstraction level which capture new concerns (as shown on
the refinement axis on Fig. 2). Moreover, at each step of the
refinement, it is possible to transform the models into suit-
able models for an early V&V of the system (as shown on
the V&V axis of Fig. 2). The V&V concern is thus separated
from other concerns, thanks to the use of specific models.

separation of concerns could benefit the compilation com-
munity to enable a clear identification of the different con-
cerns in a compiler toolchain (performance optimization,
semantic analysis, translation between languages, etc.)

Each concern in a compilation chain could be addressed
through dedicated models that would then ease the design of
the compiler passes. Such SoC is already (partially) achieved
in most compilation workbenches, which generally rely on
several different intermediate representations (IRs) corre-
sponding to the different stages of a compiler toolchain.
These IRs range from enriched ASTs that are used dur-
ing the early stage of the compilers, to low-level machine-
specific descriptions of the program, which serve for the
back-end stage. Nevertheless, each IR of a compiler mostly
corresponds to a complete/full-featured description of the
program, and almost always contains information that is irrel-
evant to the transformation (or analysis) at hand. For exam-
ple, register allocation is performed on an IR which contains
a complete machine-level description of the program, even
though the algorithm only needs an enriched conflict graph
structure to operate.
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3.3 A uniform model-driven approach for software and
language engineering

One of the main contribution of MDE is to provide method-
ological and technological foundations to design and
implement DSLs and their tooling. For this purpose, MDE
leverages a similar approach as the design and imple-
mentation of systems (object-oriented paradigm, design
by contract, etc.). This approach makes the modeling of a
DSL (aka. metamodeling) very similar to the modeling of a
system. Indeed, modeling a software system or a modeling
language for software systems end up being the same and
can therefore be tackled within a unified workbench.

While the abstraction of a software system is called a
model, the model of the abstract syntax of a language is
generally referred to as a metamodel. The modeling of a
language is enabled by a metamodeling language or meta-
language (which is to metamodels what a modeling language
is to models) such as MOF. It is then possible to define tools
on this metalanguage (i.e., metatools), and particularly gen-
erative metatools. This enables the tooling of metamodels
conforming to the metalanguage, by automating all or part
of the development tasks (e.g., textual and graphical edi-
tor generator, simulator generator, etc.). Structural software
design patterns are a perfect example of such generic con-
cepts that can be shared between metamodels. As a conse-
quence, expressing them at the metalanguage level provides
a powerful toolbox to the developers who can apply or reuse
these patterns into all their metamodels.

The notion of generative metatools is not new to compila-
tion community. For example, BEG [44] and BURG [45] are
two tools which are used to generate processor instruction
selectors, and PAG [30] and DFAGen [32] are two data-flow
analysis generators. Such tools could benefit from a shift from
the program level (i.e., model level) to the programming lan-
guage level (i.e., metamodel level) of compilation techniques
(e.g., transformation paradigms presented in Sect. 2.3).

Moreover, instances of IRs are abstractions of the com-
piled program and thus are models. Therefore, the use of
metamodels to define the abstract syntax of the intermediate
languages seems a natural choice. In this context, each pass
of the compilation chain becomes a model transformation.

Two examples of compiler infrastructures based on meta-
modeling and model transformations are GeCoS10 and Alp-
haZ11 These two research-oriented optimizing compiler
infrastructures have faced the same software engineering
issues during their development and decided to use MDE to
tackle them [46]. Indeed, compilers are composed of multi-
ple passes manipulating several intermediate languages. As
such, compiler developers face well-known software engi-

10 http://gecos.gforge.inria.fr.
11 http://www.cs.colostate.edu/AlphaZ/.

neering challenges such as maintainability of the code, doc-
umentation production or time consuming and error-prone
development tasks. With the use of metamodeling comes
a homogenization of development practices such as nam-
ing conventions. Metamodels also offer an abstract repre-
sentation of the software and document many important
design choices. These abstract representations include an
object-oriented graph (e.g., with the notion of specializa-
tion/generalization) and a tree (the containment tree). More-
over, they offer through a graphical representation an holistic
and structured view of the software. Additionally, metatools
and metatooling greatly help in automating many of the time-
consuming and error-prone development tasks. Finally, we
observed that metatools and generative approaches operate
as creativity boosters as they enable very fast prototyping and
evaluation of many new ideas.

3.4 Design-by-contract

Design-by-contract [47] has been first proposed in object-
oriented languages as a way to express assume-guarantee
conditions [48] on the behavior of software by edicting pre-
cise invariants and pre and post-conditions on its execution.
It is now integral part of MDE through languages such as
the Object constraint language (OCL) [22], allowing to use
assume-guarantee conditions on models and model transfor-
mations as for any other software. Thus, it is possible to
express conditions on the input and the output of a transfor-
mation, or of a compilation pass. These conditions can be
used to ensure a sound combination of the successive passes,
driving the design space exploration with respect to the cur-
rent state of the compiled program and the desired result.
Pre-conditions can express the expected state of the input rep-
resentation of the program and post-conditions can express
the result in terms of optimization metrics (e.g., performance
cost models, code/memory size, parallelism). Such informa-
tion are generally only known by the developers of compiler
analyses and transformations and implicitly expressed by the
order of the compilation passes, making it difficult to design
a modular compiler.

4 Convergence into SLE

As seen in the two previous sections, the compiler research
community has already proposed some solutions relating to
several of the problems faced by MDE (e.g., efficient pars-
ing, platform specific knowledge capture, scalability and
efficiency issues). This is also true the other way round
(e.g., complex data representation, separation of concerns
and design by contract). These solutions to shortcomings
from the two communities are summarized in Tables 1 and 2.
These tables reflect the focus of each community: compila-
tion emphasizes what is the result of data transformation (to a

123

http://gecos.gforge.inria.fr
http://www.cs.colostate.edu/AlphaZ/


www.manaraa.com

588 J.-M. Jézéquel et al.

Table 1 Solutions from
compilation to MDE
shortcomings

MDE shortcomings Compilation solutions

Increasing need for parsing tools due to increase
in number of DSLs

Efficient parsing and parser generators

Platform description model Capture of platform-specific knowledge through
dedicated descriptions

Tool efficiency and scalability Sophisticated algorithms and heuristics

Increasingly complex model transformations Know-how in sophisticated algorithms
development and program transformation
paradigms

Table 2 Solutions from MDE
to compilation shortcomings Compilation shortcomings MDE solutions

IRs contain more and more complex information,
more and more complex IR processings

Complex data representation and separation
of concerns

Maintainability Homogeneization of software through
generative approaches

Documentation Metamodels as documentation

Error-prone and time-consuming
development tasks

Automation through metatools and metatooling

Ordering of the compilation pass Design-by-contract to limit possible choices
to meaningful choices

first approximation, more efficient code), whereas MDE con-
centrates on how data are represented (well-defined domains
able to better capture specific knowledge and know-how).

Cross-fertilization of these two worlds hence leads to an
engineering of software languages that addresses both the
representation of data (i.e., the design of tool-supported soft-
ware languages) and the analysis and transformation of this
data (i.e., the implementation of supporting tools for such
languages). Some recent work has already been following
this direction by providing generic tools for language design
and implementation.

In this section we present the road already covered in
the cross-fertilization of the compilation and MDE worlds
(Sect. 4.1) as well as the road we still have to cover (Sect. 4.2).
We point out two challenges we believe to be of high interest
to SLE: the increasing number of software languages and the
need to bring V&V methods into SLE.

4.1 The road already covered in cross-fertilizing

The term software language refers to all the kinds of
artificial languages which are implied in software system
development, including not only programming and model-
ing languages but also data models, DSLs or ontologies [49].

The number of such languages is constantly increas-
ing [12, chapter 1], mainly due to two reasons. The first
one is the increasingly broad spectrum of domains addressed
by software systems (e.g., avionics, home automation, etc.),
raising the need for languages to care for the specificities of
these domains, along with a need to make language design

and implementation methods accessible to non-computer sci-
entists (i.e., domain experts).

The second reason is the ever growing size and complexity
of software systems, leading to a need for breaking down the
systems into smaller understandable pieces (objects, aspects,
etc.).

These two reasons lead to the continuous creation of new
languages, as well as the evolution of old ones12.

This increasing number of software languages hence
brings a need to shift from a software language “craft”, prac-
ticed by only a few language experts, to a systematic approach
for the design and implementation of tool-supported software
languages, that is usable by a large number of non-expert
users. There is a need to create new tools and methods for
the design and implementation of languages as well as a need
to bring existing tools to domain experts. Some of these tools
and methods have existed for a long time. Such tools include
the BNF and EBNF metalanguages, and lexer and parser gen-
erators like Lex and yacc allow the automatic tooling of the
languages defined from these metalanguages. However, mas-
tering even such well-established tools requires an amount
of work that is generally not affordable to domain experts.
Moreover, defining an entirely new language for every sys-
tem concern is not an option when considering the effort
needed. One of the goals of SLE is to provide accessible
tools and methods addressing all the stages of the software
language lifecycles, from design and implementation to use
and evolution.

12 Note that DSLs are also a way for companies to protect their Intel-
lectual Property Rights on their knowledge capitalization.
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Fig. 3 The role of MDE and compilation communities in the evolution from a craft to an engineering of software languages; opening the way to
design and implementation of software languages by few language experts to many domain experts

Model-driven engineering fosters the use of DSLs for the
representation of software systems and provides theoreti-
cal and methodological foundations for the design of these
DSLs. Moreover, MDE is interested in manipulating models
(i.e., description artifacts coming from modeling languages).
Meanwhile compilation develops tools for languages of dif-
ferent programming paradigms (imperative, functional, etc.)
and compilers manipulate programs (i.e., description arti-
facts coming from programming languages) through differ-
ent transformations and analyses.

Because SLE is interested in all the software languages,
and therefore all the description artifacts coming from these
languages (e.g., models, programs, etc.; also called mograms
by Kleppe [12, chapter 3]), the cross-fertilization of MDE
and compilation can bring the experience of both communi-
ties to SLE. Compiler and editor generators already go into
this direction and allow domain experts to generate tools
for their languages based on language specifications. Tools
like XText and EMFText provide concrete textual syntax
relying on the abstract syntax of the language and gener-
ate tools such as parsers, lexers, serializers or editors with
syntax highlighting, on-the-fly code completion and correc-
tion. To do so, such tools rely on a metamodel describ-
ing the abstract syntax of the language and, for example,
on the LL(*) ANTLR parser generator workbench, so as
to offer understandable representation of the abstract syn-
tax and fast, flexible parsing. The TopCased project13, an
open source MDE toolkit for the design of safety critical
applications and systems [50], goes even further providing
a graphical editor generator as well as simulator generator
and facilities to use several V&V techniques (e.g., model
checking).

Figure 3 illustrates how MDE and compilation contribute
to the design and implementation of tool-supported software
languages, putting them within the reach of domain experts
(i.e., people who are not software language experts, even not
computer scientists).

13 Toolkit in OPen-source for Critical Applications & SystEms Devel-
opment, cf. http://www.topcased.org.

4.2 Still a long way to go in cross-fertilization

There still remain many challenges ahead for SLE to pro-
vide a complete workbench for the whole lifecycle of soft-
ware languages, if this workbench aims for broad adoption
by domain experts. Domain experts need to manipulate con-
cepts relative to their domain only. This could be achieved by
automating processes out of the given domain and offering
facilities to design and implement DSLs and their respective
tooling.

Some of these facilities already exist (e.g., partial automa-
tion and facilities for the language design and implementa-
tion) but we have still to cope with the increasing number of
software languages.

Language designers also need to make sure that the tools
they use enforce some properties and that they do not seri-
ously modify the nature of their work (e.g., the binary code
produced by a compiler must preserve the semantics of the
source code).

Some of these needs have been addressed in different
contexts by other fields of computer science, particularly in
programming languages semantics and theory, and formal
methods. The expertise developed in these domains must also
to be incorporated into SLE, along with many other results
from other fields and/or communities of computer science.

4.2.1 Amortization of language and tool definition
and implementation

As mentioned previously, the number of software languages
defined and used is growing. This increase is there to answer
the various needs of an equally growing number of domain
experts. However, methods enabling the construction of a
language from other existing languages, and for the reuse of
different tools (e.g., analyses and transformations) between
such languages, are still lacking.

Model-driven engineering provides tools to ease the
design of software languages. However, these languages
are most often still created from scratch even though they
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Fig. 4 A family of graph languages

could benefit from concepts and structures defined in already
existing languages. An engineering of software languages
hence needs to provide methods not only to enable the deriva-
tion of a language from another one, but also to incrementally
define families of languages.

Figure 4 presents an example of such an incrementally
defined family of languages, where dashed lines represent
the derivation from a language to another. This family is
composed of graphs, colored graphs, weighted graphs and
weighted colored graphs, where each language shares some
concepts with the others (namely Graph, Node and Edge)
while specializing them (e.g., adding attributes such as
color). This situation leads to a lattice of graph languages
inheriting from one another.

Moreover, manipulations (e.g., analyses and transforma-
tions) written for the new languages are most often imple-
mented from scratch whereas at least a part of them is already
implemented for several other languages and could therefore
be reused. Here again, such facilities should be integrated in
the engineering of software languages.

For example, DCE is a classical optimization in a vast
majority of compilers for imperative languages. However,
a similar optimization can be done on a hardware circuit
description to eliminate useless hardware components (e.g.,
components which are not connected to an output), or in func-
tional languages. The basis of DCE is a reachability analysis
processed on a control-flow graph (CFG), all unreachable
code blocks then being removed. In a hardware description,
we can do a similar reachability analysis, using output ports
as roots, to find and remove useless components. Rather than
implementing such an analysis for each language, it would be
interesting to amortize the effort between all the languages
with a minimum of adaptations.

Figure 5a illustrates one way to cope with this issue, where
plain arrows represent mogram manipulations such as analy-
ses or endogenous transformations (e.g., T1 or T2) or exoge-
nous transformations (e.g., L1 to L4). Here, a total of six
ad hoc transformations are needed to use the two analyses
defined on languages L4 and L5 on mograms coming from
L1, L2 and L3. Many mogram manipulations (six transfor-
mations and two analyses) are developed as the two analyses
have been implemented separately for each language.

To solve this problem, pivot languages (cf. Fig. 5b), which
are intermediate languages between two sets of languages,
have been intensively investigated in the past decade, e.g.,
in V&V and for domain-specific model checking purposes
[51–54]. Their interests are twofold:

– decrease the semantic gap between two sets of languages
to ease the design of translations between them,

(a) (b) (c)

Fig. 5 Some approaches for the capitalization of model manipulations
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– capitalize and share some translation passes.

Nevertheless, the mere definition of the concept of pivot lan-
guage raises several problems. In particular, the concept of
pivot language implies a certain universality of the pivot.
Every concept possibly defined in existing or future lan-
guages has to be somehow included in the pivot. The existing
work has shown the difficulty of defining such a universal
“union”. For example, TopCased has defined the language
Fiacre [54], inspired from V-Cotre [52] and NTIF [51], which
is a pivot language between the DSL of the IDE (e.g., UML,
AADL, etc.) and the various V&V environments. This lan-
guage has reduced the distance between the DSL seman-
tics and the formalisms dedicated to the V&V (namely, Petri
nets and timed automata), and allowed each DSL to share
the transformations from the pivot language to dedicated
V&V formalisms. In practice in TopCased , the design of
a pivot language allowing the translation of very different
languages requires very different concepts and appeared to
be quite impossible. This difficulty has led to design a pivot
language family, such as synchronous and asynchronous ver-
sions whose combination also proved to be difficult. Even
if this approach is interesting for the reuse of some model
manipulations, the concept of pivot language is hence dif-
ficult to implement in the general case (i.e., for any set of
languages).

Several other approaches have been proposed within MDE
to enable the reuse of model manipulations over a family of
metamodels [55]. One of the issues faced by these approaches
is the presence of structural heterogeneities between the
metamodels of a family. As an example, consider two graph
metamodels, the first one where edges are modeled with a
class Edge and the second where edges are modeled as refer-
ences from class Node to itself. A manipulation implement-
ing a graph traversal defined on one of these two metamodels
cannot easily be reused on the other, although they clearly
belong to the same family. To cope with this problem, the
existing approaches generally use one or two of the follow-
ing mechanisms:

– adapting the metamodel on which the model manipula-
tion will be reused (e.g., adding a class Edge in the second
metamodel);

– adapting the manipulation to be reused (e.g., automati-
cally generating a new manipulation which traverses a
graph).

Some examples of approaches using the first solution are
those which introduce genericity at the metamodel level,
by means of templates [56], as well as concepts and mixin
layers [57]. Other approaches which adapt the metamodel
include patterns with variable entities (i.e., patterns express-
ing the needed concepts only) for declarative model manipu-

lation rules [58], bidirectional model manipulation DSLs [59]
and static introduction to make two metamodels structurally
equivalent [60]. Wimmer et al. [61] presented an hybrid
approach (i.e., adaptation of the metamodel and the model
manipulation) based on the aforementioned concepts that
generates a metamodel-specific manipulation from a generic
one defined for a metamodel family.

Incremental design and manipulation reuse have also been
largely addressed in programming languages, especially in
the object-oriented paradigm. Facilities such as inheritance,
genericity, subtyping and polymorphism allow two kinds of
reuse through:

– the incremental design and specialization of types and
classes, and thus, the reuse of structure (signature) and
implementation,

– the implementation of manipulations for a family of types
rather than for each members of the family.

To bring some of these facilities into SLE, languages
should be considered as first-class entities, i.e., types, hence
enabling relationships such as inheritance or subtyping
between languages. Since MDE represents the abstract syn-
tax of a language as a metamodel (i.e., a set of classes and
their relations), this has been made possible by leveraging
work on type groups [62] and family polymorphism [63]
which allow such relationships between families of classes.
The introduction of inheritance or subtyping relationships
then enables reuse across languages and reuse of mogram
manipulations.

Model typing is an existing approach introduced in MDE
as a way to allow reuse of model manipulations and incre-
mental design and implementation of modeling languages
through typing relations. In this context, Steel et al. intro-
duced the notion of model type as the set of object types
for all the objects contained in a model and their rela-
tions [64]. Based of this notion of model type, we have
defined four subtyping relations between model types [65].
These relations can be used to implement a model-oriented
type system providing not only facilities such as reuse of
model manipulation and incremental language definition
(by means of incremental model type definition), but also
auto-completion, impact analyses or type-guided compiler
optimizations.

We believe that such a type system for mograms, includ-
ing mograms and mogram manipulation typing, inheritance,
genericity and subtyping would enable new possibilities for
the design and implementation of tool-supported languages.
Indeed a mogram type including both object types for objects
which could belong to a mogram and signatures of manipu-
lations (such as introduced by Vignaga et al. [66]) defined on
this mogram would contain abstract syntax (a set of object
types can be seen as a metamodel) and semantics given by
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Fig. 6 Capitalization of model
manipulations in the GeCoS
research-oriented compiler
infrastructure using model
typing

the manipulations (e.g., translational semantics given by a
code generator) of a language. In this context, inheritance
between languages (or mogram types) would enable incre-
mental design of languages through inheritance and special-
ization of structures, and genericity and subtyping would
enable the reuse of mogram manipulations by introducing
substitutability of mograms.

One advantage of such facilities compared with pivot lan-
guages is the possibility of defining a type lattice, where a
type is the “intersection” of its subtypes and not the “union”
as in a pivot language. This way a language can inherit from
the manipulations of interest defined at the highest possi-
ble level, i.e., the level in the type hierarchy which con-
tains the minimal set of necessary information to express
the manipulations. This is illustrated in Fig. 5c where dashed
arrows represent the subtyping relationships between two
languages and thus the substitutability of the mograms com-
ing from the “sub-language” to the mograms coming from
the “super-language” in manipulations (e.g., mograms from
L2 and L3 can be used as mograms from L5 for the manip-
ulations defined on the latter). To follow this approach, it is,
however, mandatory to precisely define how a language and
a mogram type are related, and then how such a type can
inherit from another one.

As an example, the various DSLs used by the GeCoS com-
piler infrastructure such as CFG, hardware description lan-
guage (HDL) or processor instruction description language
are illustrated in Fig. 6. It is possible to perform several
analyses on mograms coming from these DSLs. For example,
analyses which eliminate useless parts of the mograms such
as DCE or circuit trimming and also more specific analyses
such as loop optimizations on CFG. Several analyses, while
performed on mograms coming from different formalisms

(data or control flow) present similarities and could be writ-
ten only once for a common mogram type and shared between
the DSLs by subtyping or genericity instead of being written
again and again.

4.2.2 Inter-language reasoning

With the growing size of software systems, and particularly
with the growing number of languages used for the design and
implementation of one system, there is an increasing need for
globally reasoning on a system through different viewpoints.
To reason about such a system, a tool would need to be able to
browse the links (implicit or explicit) between the languages
in which viewpoints are defined.

For example, checking the consistency of several views
of a system requires knowing which elements of these views
are related (i.e., which elements have to be consistent with
each other) and how they are related (i.e., how to check the
consistency of a set of related elements). The links indicating
which elements are related can be implicit (e.g., elements
with the same names are related) or explicit.

DeRemer and Kron [67], working in the context of
programming-in-the-large versus programming-in-the-small,
were probably the first to introduce such explicit links. They
introduce the notion of modules written in a language and
linked by another language, dedicated to this goal.

Of course, ever since the dawn of the history of soft-
ware systems, compilers have created such links between
languages, mapping structures from high-level languages to
their equivalent in processor instructions sets, but these links
were generally implicit and embedded into the transforma-
tion from one language to another.
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The possibility of defining relationships between sev-
eral languages, to reason about these relationships, has been
already explored in MDE. For instance, Megamodels are
models whose elements are themselves models linked by
various kinds of relationships (e.g., conformance, transfor-
mation, etc.) [68]. They were primarily meant to manage
model dependencies [69]. Other approaches use relationships
between languages to ensure the consistency between mod-
els of the same system [70], to help the design of complex
systems [71], to specify transformations from one language
to another [72,73] or to ensure the traceability of such trans-
formations [74].

We believe that making these links explicit and clearly
separating them from the semantics they carry should ease
their manipulation as well as their reuse. Hence such structure
should be an inherent part of a metalanguage.

4.2.3 Verification and validation

Automatic transformations of mograms play a decisive role
in compilation and MDE. Such transformations can be the
translation from one language to another (e.g., code gener-
ation targeting a specific platform) or mogram refactorings
(e.g., code optimization). As for any other automated task,
there is a need to ensure that some structural and behav-
ioral properties are preserved by successive transformations.
Hence we consider V&V as a key concern of SLE. It requires
the integration of formal methods while remaining as trans-
parent as possible to domain experts who define languages
and transformations.

There are of course several benefits in using DSLs rather
than general-purpose programming languages with respect to
V&V. V&V tools often face intractable or even undecidable
problems due to the high expressivity of general-purpose lan-
guages. DSLs can be engineered to be less expressive than
general-purpose programming languages, using a reduced
number of domain-specific concepts. This reduced expres-
sivity makes it possible to use V&V tools. Typically, the
reduced number of concepts of a DSL implies a reduced size
of the input domain to be covered by analyses.

Domain-specific languages also come with separation of
concerns, enabling the division of large and complex systems
into several smaller pieces (i.e., into several domain-specific
mograms rather than one program). Such small mograms
allow the use of V&V tools (e.g., model-checking) which
would not scale on complete systems.

However, the use of DSLs instead of general-purpose lan-
guages raises new problems and needs. Widely used general-
purpose languages can rely on a huge number of users writing
different kinds of mograms, which provides many test cases
for the compilers (e.g., gcc). DSLs by definition do not have
such a wide user base, implying the need to formally assess
the DSL tooling, and to automate the V&V tasks.

V&V of transformations to ensure preservation of proper-
ties have been explored by the CompCert project [75] which
aims at providing an entirely verified optimizing C compiler
and which is based on several DSLs such as CLight (a subset
of C) or a language for Linear Temporal Logic and on a mem-
ory model designed to be formally analysed [76]. Several
other authors address the verification of model transforma-
tions using bi-simulation of input and ouput models [77,78]
or graph transformation rules [79]. However, these transfor-
mations are still manually verified by their developers.

Automated testing of model transformations is another
way to ensure property preservation for transformations
which cannot or must not be entirely verified. Baudry et
al. [80] have identified barriers to such an automated test-
ing, namely the inherent complexity of the graph structures
manipulated by the transformations, the lack of maturity of
model management environment and the heterogeneity of
transformation languages and techniques.

5 Conclusion and perspectives

According to Hutchinson et al. [81], one of the main
successful uses of MDE in industry is in the design and imple-
mentation of DSLs, each specially built to handle a given con-
cern. We should probably better account for this fact when
we teach MDE to both engineers and students. This article
can be seen as going one step further. Our collective expe-
rience is that both communities—MDE and compilation—
have a lot to gain in a better understanding of the other side’s
experience and technologies. We hope that this article will
raise the interest of both communities in bridging the chasm,
making, on one hand, MDE more efficient and, on the other
hand, allowing compiler technology to better leverage soft-
ware engineering and to meet in a new Software Language
Engineering.

While SLE is becoming a key concern in software engi-
neering, some challenges should be tackled by relying on
MDE and compilation expertise. Nevertheless, some other
challenges cannot be solved directly by synergies between
MDE and compilation and should also benefit from other
fields of computer science (e.g., formal methods).
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